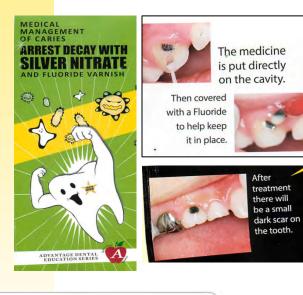
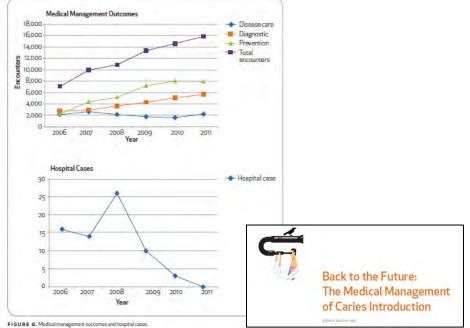
Clinical Effectiveness of Silver Ion Products for Caries Control

Margherita Fontana, DDS, PhD

University of Michigan School of Dentistry Department of Cariology, Restorative Sciences and Endodontics




Topics

- Silver products used for caries control
- SDF in the US
- RCT studies on primary teeth-Implications for evidence-based technique
- UoM ongoing RCT

Silver Compounds

Table 1 – Use of silver compounds for caries management in dentistry.

Period	Advances			
Up to 1900	AgNO3 used in caries management			
1917	Howe's solution (AgNH ₃ NO ₃) invented and used up to 1950s			
1970s-1990s	AgF used alone and combined with SnF_2			
	in clinical studies in Western Australia			
1970s	Development of SDF in Japan supported			
	by Central Pharmaceutical Council of the			
	Ministry of Health and Welfare			
1990s	SDF was recommended for young children in Brazil			
2000s	Randomized controlled clinical trials on SDF			
and a second	and other preventive treatments			
2000s	Addition of silver particle into restorative materials			

Peng et al., 2012

AgNH₃NO₃: Howe's ammoniacal silver nitrate solution

Table 2 – Clinical evid	Table 2 – Clinical evidence for silver compounds utilization (1905–2011).					
Author	Type of study, duration, and intended effect on caries	Treatment protocol and results	Outcome			
(1) AgNO ₃						
Prime J 1935 ¹³	Case report Caries arresting	AgNH ₃ NO ₃ single application: 2 permanent upper incisors	AgNH ₃ NO ₃ was useful for arresting caries			
Klein H 1942 ¹⁴	Cohort (5 y)	AgNH ₃ NO ₃ single application: 37 teeth	AgNH ₃ NO ₃ was not effective in preventing caries			
	Caries prevention	Control (no treatment): 55 teeth 79% of treated and 77% of the untreated permanent molars became carious at recall				
Seltzer S 1942 ⁸	Cohort (1 y)	$AgNH_3NO_3$ single application: 9 teeth	AgNH ₃ NO ₃ had limited sterilising effect			
	Cavity sterilising and restoration	Control (no treatment): 12 teeth				
		Sealed by gutta percha and amalgam restoration, 22% vs 8% showed no bacteria respectively				
Schultz-Haudts S 1956 ¹⁵	Cohort (1 y)	Excavation + AgNH ₃ NO ₃ single application: 136 class II carious lesions	"AgNO ₃ has caries arresting effects in primary teeth."			
	Caries arresting	Excavation alone: 93 class II carious lesions The "caries arresting rate" was 82% and 17% respectively				

 $Ca_{10}(PO_4)_6(OH)_2 + AgNO_3 \rightarrow Ca(NO_3)_2 + Ag_3PO_4 + Ag_2O \ + \ H_2O$

Re: K102973 Trade/Device Name: Silver Dental Arrest Regulation Number: 21 CFR 872.3620 Regulation Name: Cavity Varnish Regulatory Class: Class II Product Code: PHR Dated: April 19, 2014 Received: April 22, 2014

DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration	Form Approved: OMB No. 0910-0120 Expiration Date: January 31, 2017
Indications for Use	See PRA Statement below.
510(k) Number (# known)	
K102973	
Device Name	
Silver Dental Arrest	

Thus, use for caries control is "off label", similar to use of Fluoride Varnish

38% (55,800 ppm F) Silver Diamine Fluoride-SDF

[e.g., Saforide, Advantage Arrest (US); ammonia and AgF combined to form a diamine silver ion complex $Ag(NH_3)_2$ +; claimed to be more stable than AgF, and can be kept at constant concentration for a longer time; pH=8-10]

 $\begin{array}{l} Ca_{10}(PO_4)_6(OH)_2 + Ag(NH_3)_2F \mathop{\rightarrow} CaF_2 + Ag_3PO_4 \\ \\ + & NH_4OH \\ Alkaline \ environment \end{array}$

•Antibacterial

•When in contact with dentin: Ag_3PO_4 (weakly soluble; turns black with sunlight or reducing agents)= Black, hard layer

(>20µm deep enamel, Willerhausen et al., 2015; 50-200µm in dentin; Chu and Lo, 2008)

•Metallic taste; transient gingival and mucosal irritation (Llodra et al., 2005)

•To counter stain: KI (in vitro suggests same effect on

biofilm, Knight et al., 2005)

•Low cost, easy to use

Rosenblatt et al., 2009

S	tudies on Primary Teeth (some include also permanent teeth)
Chu et al. (2002) (Lo et al., 2001)	 After 1.5 and almost 3 years, 38% SDF arrests lesions better than FV and nothing (1x/year: PF ~ 70-84%; better than FV ~44-56%) No need for prior excavation
Llodra et al. (2005)	 2x/year better than nothing in prevention and arrest Preventive effect higher in primary than permanent teeth (primary teeth PF 79% and 64% in permanent teeth)
Yee et al. (2009)	 After 2 years, 38% more effective than 12% SDF (and 12% equal to no treatment) Effectiveness decreases over time
Zhi et al. (2012)	 Annual application of 38% SDF or glass ionomer can arrest active dentine caries. Increasing the frequency of application to every 6 months can increase the caries arrest rate of SDF application [Caries arrest rates were 79%-1X/year, 91%-2x/year, and 82%-control, respectively (p=0.007).]
Santos et al. (2012)	• After 1 year, 30% SDF was more effective than IRT for arresting caries in primary teeth.
Duangthip et al. (2015)	• Annual or three consecutive weekly applications of SDF solution is more effective in arresting dentine caries in primary teeth than three consecutive weekly applications of NaF varnish.
Santos et al. (2014)	• After 1 year, Nano-AgF was more effective in arresting cavitated lesions than no treatment (PF:50%)

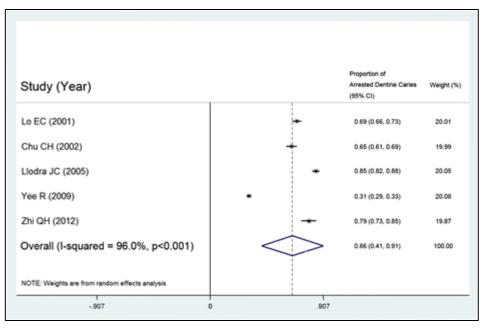
Authors (Year)	Target	Surface	Groups	Results
Chu et al. (2002) (Lo et al., 2001 reported 18 month data)	Children 3-5 (China); N=375 Low F= 0.2 ppm HIGH CARIES= dmfs of anterior teeth: 4.66	Cavitated lesions in anterior primary teeth (RCT; 30 months; 1 blinded calibrated examiner; exams every 6 months; outcome= caries arrest- hardness)	5 groups: 38% SDF annually (with or without excavation) vs. FV applied every 3 months (with or without excavation) vs. control (no treatment)	SDF groups had higher caries arrest rates than those of NaF groups and control (respective mean numbers of arrested caries tooth surfaces in the five groups were 2.5, 2.8, 1.5, 1.5 and 1.3). All arrested lesions, regardless of group, were darker Conclusion 1)SDF arrests lesions better than FV and nothing (1x/year: PF ~ 70-84%; better than FV ~44-56%) 2)No need for prior excavation

(Comments: ethical concern regarding the no treatment, study quality good; low risk of bias. "In this study, only the upper primary incisors and canines were involved, because caries in the three- to four-year-old Chinese children was mainly found in these teeth")

Authors (Year)	Target	Surface	Groups	Results
Llodra et al. (2005)	Children 6-15 (Cuba); N=452	Cavitated lesions	38% SDF every 6 months for 3 min	Mean # of new decayed surfaces in primary teeth during the study was 0.29 in the SDF group <i>vs</i> .1.43 in controls.
(2003)	(Cuba), N=452	of primary and permanent teeth	(no tissue removal in	study was 0.29 in the SDF group <i>vs</i> .1.45 in controls.
	Low F= 0.09ppm	and	primary teeth; yes	The mean of new decayed surfaces in first permanent molars
	dmfs: 3.5-3.6	occlusal surfaces of any first	for permanent teeth) vs.	was 0.37 in the SDF group <i>vs</i> . 1.06 in controls.
	(primary teeth data	permanent molars		With respect to the therapeutic effect of SDF (arrest of
	were gathered for the surfaces of only	that had erupted.	nothing	caries), around 77% of treated active lesions became inactive, both in primary teeth and in first permanent molars.
	canines and molars.	(RCT, 36 months;		inactive, both in printary teeth and in first permanent motars.
	In permanent	2 blinded		A hypothetical risk attributed to SDF is its possible toxicity
	teeth, data were	calibrated		to the pulp. This concern was not supported by the present
	gathered only on first	examiners; exams		results
	molars)	every 6 months;		
		outcome: caries		Conclusion:
	Note: All schools had a preventive program	arrest-hardness)		1)2x/year better than nothing in prevention
	(OHI, dietary			and arrest
	recomm., and 0.2%			2) Preventive effect higher in primary than
	NaF mouthrinses			permanent teeth (primary teeth PF 79%
	every 2 wks)			
				and 64% in permanent teeth)

(Comments: "In the present study, the baseline level of caries was much higher in deciduous teeth (mean of > 3 surfaces with caries) than in first permanent molars (0.3 surfaces with caries), which may explain the greater efficacy of the SDF solution in the deciduous dentition.")

Authors (Year)	Target	Surface	Groups	Results
Yee et al.	Children 3-9	Active	1 application	# of arrested lesions was significantly higher in
(2009)	(Nepal);	cavitated	(2min):	groups treated with 38% SDF than 12% SDF
	N=976	lesions in	38% SDF + tannic	and control group.
		primary teeth	acid made from	
	Low	(anterior and	tea as a reducing	No difference between 38% SDF alone and the
	F=0.03ppm	posterior)	agent vs.	group treated with 38% SDF + tannic acid (to
				accelerate deposition of silver phosphate).
	dmft: 4.6	(RCT; 24	38% SDF vs.	
		months;		There was no effect of the 12% SDF alone
		calibrated	12% SDF vs.	application
		dentist and		
		therapist	nothing (control)	Conclusion:
		baseline		1)38% more effective than 12% SDF
		exams, all		2)Effectiveness decreases over time
		follow up		
		exams by blinded		
		therapist; exams at 6, 12		
		and 24		
		months)		
		monuis)		


Authors (Year)	Target	Surface	Groups	Results
Zhi et al. (2012)	Preschool Children 3-4 (China), N=212 Mean dmft: 5.1	Cavitated active dentine lesions in primary teeth (RCT, 3 years, exams every 6 months, 1 calibrated blinded examiner)	 38% SDF annually vs. SDF biannually vs. Glass ionomer filling 	Caries arrest rates were 79%, 91% and 82%, respectively (p=0.007). Conclusion: 1)Annual application of either SDF solution or high fluoride-releasing glass ionomer can arrest active dentin caries. 2)Increasing the frequency of application to every 6 months can increase the caries arrest rate of SDF application.

(Comments: blinding of filling impossible; study quality good; low risk of bias)

					-			
Author, Year [Ref]	Method	% arrest of dentine caries		Ri B	sk o		IS ** E	
Santos et al.	Primary teeth, 12-month	Gp1>Gp2		Ð				
2014 [17]	Gp1 - Nano-AgF (n=63) Gp2 - No treatment (n=67)	(p=0.003)	Ψ	Φ	Φ	θ	θ	Ð
Santos et al, 2012 [16]	Primary teeth, 12-month Gp1 - 30% SDF (n=183) Gp2 - GI (n=162)	Gp1>Gp2 (p<0.001)	0	0	θ	⊕	⊕	⊕
Zhi et al, 2012 [14]	Primary teeth, 24-month Gp1 - 38% SDF annually (n=218) * Gp2 - 38% SDF semi-annually (n=239) GP3 - Glass ionomer annually (n=262)	Gp2>Gp1,Gp3 (p=0.007)	Φ	0	⊕	⊕	⊕	Ð
Yee et al, 2009 [15]	Primary and permanent teeth, 24-month Gp1 - 38% SDF (n=3,396) * GP2 - 12% SDF (n=1,652) Gp3 - No treatment (n=1,590)	Gp1>Gp2,Gp3 (p<0.001)	Ð	0	⊕	⊕	⊕	⊕
Llodra et al, 2005 [13]	Primary and permanent teeth, 36-month Gp1 - 38% SDF semi-annually (n=675) * Gp2 - No treatment (n=658)	Gp1>Gp2 (p<0.001)	0	0	Ð	0	Φ	⊕
Chu et al, 2002 [12]	Primary teeth, 30-month Gp1 - 38% SDF annually (n=641) * Gp2 - 5% NaF every 3 months (n=576) GP3 - No treatment (n=273)	Gp1>Gp2,Gp3 (p<0.001)	θ	0	⊕	⊕	⊕	⊕
Lo et al, 2001 [11]	Primary teeth, 18-month Gp1 - 38% SDF annually (n=641) * Gp2 - 5% NaF every 3 months (n=576) GP3 - No treatment (n=273)	Gp1>Gp2,Gp3 (p<0.001)	θ	0	⊕	Φ	⊕	⊕
* Data include ** Risk of bia (A) Random s (B) Allocation (C) Blinding e (D) Incomplet (E) Selective (F) Other bias	equence generation (selection bias) a concealment (selection bias) of outcome assessment (detection bias) ae outcome data (attrition bias) reporting (reporting bias)	ride, <i>GI</i> Glass ion	omer					

Meta-analysis of studies using 38% SDF to arrest dentin caries

• Systematic search 1948-2014 was [(fluoride) AND (remineralisation OR remineralization OR arresting) AND (children caries OR early childhood caries)]

• Meta-analysis (5 papers) using 38 % SDF= overall proportion of arrested dentin caries was 65.9 % (95 % CI: 41.2 % - 90.7 %; p<0.001)

		Other O	utcomes or Ongo	ing Studies
Authors (Year)	Target	Surface	Groups	Results
Shah et al. (2013)	Children	Plaque and salivary <i>S</i> . <i>mutans</i> scores	SDF vs. fluoride varnish vs. APF gel.	 Significant reduction was found in plaque score as well as <i>S. mutans</i> counts irrespective of group division. On intergroup comparison, no statistically significant difference was found in plaque score, but significant reduction in <i>S. mutans</i> counts was found in SDF as compared with the other 2 groups
Mattos- Silveira et al. (2015)- Ongoing trial	Children 3-10 (Brazil), N=141	Approximal surfaces with incipient lesions in primary or permanent teeth (RCT)	flossing vs. SDF vs. resin infiltration	• Children allocated in the infiltration group showed higher levels of discomfort than those in the SDF and control groups

Recommended UoM Technique (38% SDF)

- Caries removal does not offer any significant benefit in arresting caries (remove food debris)
- Dry lesion and apply SDF, wait ~1-3 min before rinsing with water
- Be careful not to touch soft tissues or other surfaces (tongue, cheek, etc.; or clothes, dental operatory, etc.)
- **Biannual application better than annually**
- Application of reducing agent (10% SnF₂ or tannic acid) shows no additional benefit in effect of SDF

UCSF Dental Center Informed Consent for Silver Diamine Fluoride

Facts for consideration:

- Silver diamine fluoride (SDF) is an antibiotic liquid. We use SDF on cavities to help stop tooth decay. We also use it to treat tooth sensitivity. SDF application every six to 12 months is necessary.
- The procedure: 1. Dry the affected area. 2. Place a small amount of SDF on the affected area. 3. Allow SDF to dry for one minute.
 4. Rinse.
- Treatment with SDF does not eliminate the need for dental fillings or crowns to repair function or esthetics.
 Additional procedures will incur a separate fee.
- I should not be treated with SDF if: 1. I am allergic to silver. 2. There are painful sores or raw areas on my gums (i.e., ulcerative gingivitis) or anywhere in my mouth (i.e., stomatitis).

Benefits of receiving SDF:

- SDF can help stop tooth decay.
- · SDF can help relieve sensitivity.

Risks related to SDF include, but are not limited to:

- The affected area will stain black permanently. Healthy tooth structure will not stain. Stained tooth structure can be replaced with a filling or a crown.
- Tooth-colored fillings and crowns may discolor if SDF is applied to them. Color changes on the surface can normally be polished
 off. The edge between a tooth and filling may keep the color.
- If accidentally applied to the skin or gums, a brown or white stain may appear that causes no harm, cannot be washed off and will disappear in one to three weeks.
- · You may notice a metallic taste. This will go away rapidly.
- If tooth decay is not arrested, the decay will progress. In that case the tooth will require further treatment, such as repeat SDF, a filling or crown, root canal treatment or extraction.
- These side effects may not include all of the possible situations reported by the manufacturer. If you notice other effects, please contact your dental provider.
- Every reasonable effort will be made to ensure the success of SDF treatment. There is a risk that the procedure will not stop the decay and no guarantee of success is granted or implied.

Alternatives to SDF, not limited to the following:

- No treatment, which may lead to continued deterioration of tooth structures and cosmetic appearance. Symptoms may increase in severity.
- Depending on the location and extent of the tooth decay, other treatment may include placement of fluoride varnish, a filling or crown, extraction or referral for advanced treatment modalities.

I CERTIFY THAT I HAVE READ AND FULLY UNDERSTAND THIS DOCUMENT AND ALL MY QUESTIONS WERE ANSWERED:

(signature of patient)

(date)

(date)

(signature of witness)

FIGURE 4. UCSF special consent form.

New code CDT 2016 code

D1354 - Interim caries arresting medicament application

"Conservative treatment of an active, non-symptomatic carious lesion by topical application of a caries arresting or inhibiting medicament and without mechanical removal of sound tooth structure"

SDF can be billed under...

D1208 -Topical application of fluoride
D9910 - Application of a desensitizing medicament, per visit
D1999 - Unspecified preventive procedure by report

The Effectiveness of 38% SDF as a Treatment for Caries Lesions in Comparison to Traditional Restorative Techniques:

A 12 Month Randomized Controlled Trial

Whitney Yang, Margherita Fontana, George Eckert

To Evaluate:

•<u>Effectiveness of treatment</u> of cavitated caries in children by application of SDF in comparison to conventional restorative treatments (Hyp: Both effective)

•<u>Perceptions of parents and patients</u> to both treatment modalities and their levels of acceptability (Hyp: Both acceptable)

•<u>Perceptions of dental providers</u> in terms of ease of use and clinical time spent (Hyp: SDF easier)

•<u>Cost-effectiveness</u> of the two treatment approaches regarding both practitioner chair time and material-based cost (Hyp: SDF: cheaper)

Time point	Visit
Baseline	SDF or Conventional Restoration (RANDOM ALLOCATION)
1 month	Intermediate Contact *
2 months	Intermediate Contact
3 months	Clinic Visit 2 (Major & minor failure assessment, pain, parent satisfaction)
4.5 months	Intermediate Contact
6 months	Clinic Visit 3 (Second SDF application, major & minor failure assessment, pain, parent satisfaction, radiographs)
9 months	Intermediate Contact
12 months	Clinic Visit 4 (Major & minor failure assessment, pain, radiographs, parent satisfaction, provider acceptability)

* Intermediate Contacts: Attrition prevention, update contact information, follow-up on pain

- Low cost, easy to use
- Arrest cavitated advanced lesions (PF: ~66-90%)
- Evidence limited, but some studies of good quality suggest this is an important alternative for some lesions in some patients to help control dental caries at the tooth level

QUESTIONS?

Thank you!

